Pular para o conteúdo principal

conjunto

Ele representa conjuntos da seguinte maneira: a)
b) Relação de inclusão – SubconjuntoDados dois conjuntos A e B, diz que A está contido em B ou que A é subconjunto de B, somente se, todo elemento do conjunto A também for elemento de B. Isso será representado da seguinte forma: A B. Por Exemplo:
Observe que todo elemento pertencente ao conjunto A pertence também ao conjunto B. Por isso, A está contido em B. Simbolicamente A B “A está contido em B”. B A “B contém A”.
►Conjunto unitário e conjunto vazio Por exemplo: A = { x x é par e 4 < x < 8 } ou A = {6} B = { x 2x + 1 = 7 e x é inteiro } ou B = {3} Os dois conjuntos acima são exemplos de conjuntos unitários. Pois possuem apenas um elemento.
Dado o conjunto C = { y y é natural e 2 < y < 3 } é um conjunto que não possui nenhum elemento, esse tipo de conjunto é chamado de conjunto vazio. Indicamos um conjunto vazio por { } ou , nunca por { }. ►Igualdade de conjuntos Dizemos que um conjunto é igual a outro se todos os elementos de um conjunto forem iguais a todos os elementos do outro conjunto. Exemplo: Dados os conjuntos A = {0,1,2,3,4} e B = {2,3,4,1,0} como todos os elementos são iguais podemos dizer que A = B. ►Relação entre dois conjuntos. Quando vamos fazer a relação de elemento com conjunto utilizamos os símbolos de pertence e não pertence . Por exemplo: Dado o conjunto dos números naturais o elemento 5 N
e
-8 N. Agora quando relacionamos conjunto com conjunto utilizamos os símbolos de está contido e não está contido . Por Exemplo: {1,2,3} {1,2,3,4,5,6} O conjunto dos N está contido dentro dos inteiros. N Z e o conjunto dos inteiros não está contido dentro do conjunto dos naturais Z N. ♦ Todo conjunto está contido em si mesmo B B. ♦ O conjunto vazio está contido em todo conjunto A.
Por Danielle de Miranda
►Interseção Os elementos que fazem parte do conjunto interseção são os elementos comuns aos conjuntos relacionados. Exemplo 1: Dados dois conjuntos A = {5,6,9,8} e B = {0,1,2,3,4,5}, se pedimos a interseção deles teremos: A ∩ B = {5}, dizemos que A “inter” B é igual a 5.
Exemplo 2: Dados os conjuntos B = {-3, -4, -5, -6} e C = {-7, -8, -9}, se pedirmos a interseção deles teremos: B ∩ C = { } ou B ∩ C = , então B e C são conjuntos distintos.
Exemplo 3: Dados os conjuntos D = {1,2,3,4,5} e E = {3,4,5}. A interseção dos conjuntos ficaria assim: E ∩ D = {3,4,5} ou E ∩ D = E, pode ser concluído também que E D. ►União Conjunto união são todos os elementos dos conjuntos relacionados. Exemplo 1: Dados os conjuntos A = { x x é inteiro e -1 < x < 2} e B = {1,2,3,4} a união desses dois conjuntos é : A U B = {0,1,2,3,4} Exemplo 2: Dados os conjuntos A = {1,2,3} e B = {1,2,3,4,5} a união desses conjuntos é: A U B = {1,2,3,4,5}, nesse caso podemos dizer que A U B = B. ►Diferença entre dois conjuntos. Dados dois conjuntos A e B chama-se conjunto diferença ou diferença entre A e B o conjunto formado pelos elementos de A que não pertencem a B. O conjunto diferença é representado por A – B. Exemplo 1: A = {1,2,3,4,5} e B = {3,4,5,6,7} a diferença dos conjuntos é: A – B = {1,2}
Exemplo 2: A = {1,2,3,4,5} e B = {8,9,10} a diferença dos conjuntos é: A – B = {1,2,3,4,5} Exemplo 3: A = {1,2,3} e B = {1,2,3,4,5}a diferença dos conjuntos é: A – B =
Exemplo 4: Dados os conjuntos A = {1,2,3,4,5,6} e B = {5,6}, a diferença dos conjuntos é: A – B = {1,2,3,4}. Como B A podemos escrever em forma de complementar: A – B = A B = {1,2,3,4}.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de