Pular para o conteúdo principal

Probabilidade

As origens da matemática da probabilidade remontam ao século XVI. As aplicações iniciais referiam-se quase todas a jogos de azar. Os jogadores aplicavam o conhecimento da teoria das probabilidades para planejar estratégias de apostas. Mesmo hoje ainda muitas aplicações que envolvem jogos de azar, tais como diversos tipos de loterias, os cassinos de jogos( No Brasil Bingos) e os esportes organizados. todavia, a utilização das probabilidades ultrapassou de muito o âmbito desses jogos. Hoje muitas organizações(públicas ou privadas) já incorporaram a teoria das probabilidades em seus processos diários de deliberações.”

O ponto central em todas as situações onde usamos probabilidade é a possibilidade de quantificar quão provável é determinado EVENTO.

As probabilidades são utilizadas para exprimir a chance de ocorrência de determinado evento.

Experimentos aleatórios, espaço, amostral e evento

Encontramos na natureza dois tipos de fenômenos: determinísticos e aleatórios.

Os fenômenos determinísticos são aqueles em que os resultados são sempre os mesmos, qualquer que seja o número de ocorrência dos mesmos.

Se tomarmos um determinado sólido, sabemos que a uma certa temperatura haverá a passagem para o estado líquido. Esse exemplo caracteriza um fenômeno determinístico.

Nos fenômenos aleatórios, os resultados não serão previsíveis, mesmo que haja um grande número de repetições do mesmo fenômeno.

Por exemplo: se considerarmos a produção agrícola de uma determinada espécie, as produções de cada planta serão diferentes e não previsíveis, mesmo que as condições de temperatura, pressão, umidade, solo sejam as mesmas para todas as plantas.

Podemos considerar como experimentos aleatórios os fenômenos produzidos pelo homem.

Exemplos:

a) lançamento de uma moeda;

b) lançamento de um dado;

c) determinação da vida útil de um componente eletrônico;

d) previsão do tempo.

A cada experimento aleatório está associado o resultado do mesmo, que não é previsível, chamado evento aleatório.

Um cojunto S que consiste de todos os resultados possíveis de um experimento aleatório é denominado espaço amostral.

Probabilidade de um evento

A probabilidade de um evento A, denotada por por P(A), é um número de 0 a 1 que indicaa chance de ocorrência do evento A. Quanto mais próxima de 1 é P(A), maior é a chance de ocorrência do evento A, e quanto mais próxima de zero, menor é a chance de ocorrência do evento A. A um evento impossível atribui-se probabilidade zero, enquanto que um evento certo tem probabilidade 1,0.

As probabilidades podem ser expressas de diversas maneiras, inclusive decimais, frações e percentagens. Por exemplo, a chance de ocorrência de um determinado evento pode ser expressa como 20%; 2 em 10; 0,20 ou 1/5.

http://ensinodematemtica.blogspot.com
extraido de www.colegioweb.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de