Pular para o conteúdo principal

Números

Número, palavra ou símbolo utilizado para designar quantidades ou entidades que se comportem como quantidades.


NÚMEROS REAIS

Números racionais: os inteiros e quebrados positivos e negativos junto com o número zero formam o sistema dos números racionais. Qualquer número racional pode ser representado como um decimal periódico e vice-versa.

Números irracionais: números reais que não podem ser representados como fração ou decimal periódico. Por exemplo, Ã = 1,4142135623... e ð = 3,1415926535... são números irracionais e suas expansões decimais são necessariamente infinitas e não periódicas.

O conjunto dos números racionais junto com o dos irracionais forma o conjunto dos números reais.


NÚMEROS IMAGINÁRIOS

Os números imaginários representam raízes quadradas de números negativos. O símbolo i representa a unidade dos números imaginários e equivale a Á. Qualquer número imaginário pode ser escrito como ai, sendo a um número real.


NÚMEROS COMPLEXOS

Os números complexos resultam da combinação de números reais com imaginários. De forma geral, um número complexo é representado como a + bi, sendo a e b números reais.

Número Complexo, expressão da forma a + bi, sendo a e b números reais e sendo i Á. Estes números podem ser somados, subtraídos, multiplicados e divididos, formando um corpo.

Em um número complexo a + bi, a é conhecido como a parte real e b como a parte imaginária. A adição de números complexos realiza-se somando as partes reais e imaginárias separadamente: (a + bi) + (c + di) = (a + c) + (b + d) i.

A multiplicação de números complexos baseia-se em que i · i = -1 e em concluir que esta operação é distributiva quanto à adição: (a + bi)·(c + di) = (ac - bd) + (ad + bc) i.

Os números complexos podem ser representados como pontos de um plano no chamado diagrama de Argand. Dado que os pontos do plano podem ser definidos em função de suas coordenadas polares r e è, todo número complexo z pode ser escrito da forma z = r (cos è + i sen è), sendo r o módulo de z ou a distância do ponto à origem e è é o argumento de z, ou ângulo entre z e o eixo das abscissas x.

Corpo (matemática), conjunto de elementos com os quais se pode realizar operações que satisfazem certas propriedades. A teoria matemática dos corpos é uma das principais ferramentas para estudar as propriedades fundamentais dos números.

Formalmente, um corpo é um conjunto F, junto com duas operações, Å e Ä, que satisfazem certas propriedades. Os símbolos Å e Ä podem indicar a adição e a multiplicação comuns ou outro par qualquer de operações semelhantes. As propriedades que o conjunto F tem que cumprir para ser um corpo são as seguintes: (1) A adição e a multiplicação devem ser uniformes e estar bem definidas: a Å b e a Ä b são elementos únicos de F para qualquer a e b de F (2) Para qualquer par de elementos de F, cumpre-se a propriedade comutativa da adição:

a Å b = b Å a (3) Para qualquer trio de elementos de

F, se cumprem as propriedades associativas da adição e da multiplicação:

(a Å b) Å c = a Å (b Å c) e (a Ä b) Ä c = a Ä (b Ä c)

(4) Existem os elementos neutros da adição e a multiplicação, que se representam como 0 e 1, sendo 0 ≠ 1, que cumprem: a Å 0 = a = 0 Å a e a Ä 1 = a = 1 Ä a para qualquer a de F

(5) Todo elemento a de F tem um elemento simétrico, -a, tal que: a Å (-a) = 0 = (-a) Å a

(6) Todo elemento a de F diferente de zero tem um elemento inverso, a-1, tal que: a Ä a-1 = 1 = a-1 Ä a

(7) A propriedade distributiva cumpre-se para todos os elementos de F: a Ä (b Å c) = a Ä b Å a Ä c

A subtração se define utilizando a quinta propriedade, isto é, a - b = a Å (-b).

A divisão se define utilizando a sexta propriedade, isto é, a / b = a Ä b-1, para todo b diferente de zero.

Sistema de coordenadas, sistema de identificação de elementos em um conjunto de pontos, marcando-os com números. Estes números são chamados de coordenadas e indicam a posição de um ponto dentro do conjunto.

As coordenadas cartesianas são as mais usadas. Em duas dimensões, são formadas por um par de retas que se cortam em ângulo reto. Cada reta é chamada de eixo e desenhada como a horizontal (eixo x) e a vertical (eixo y). Em três dimensões, acrescenta-se o eixo z, perpendicular aos outros.

Em coordenadas polares, a cada ponto do plano são atribuídas as coordenadas (r,è) com relação a uma reta fixa no plano, denominada eixo polar, e a um ponto desta linha chamado de origem. Para um ponto qualquer do plano, a coordenada r é a distância do ponto até a origem, e a è é o ângulo entre o eixo polar e a linha que une a origem e o ponto.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de