Pular para o conteúdo principal

Aplicando jogos matemáticos em sala de aula


O currículo proposto pela LDB não deve ser encarado pelo professor como algo a ser comprido a risca ou como um montante de conteúdos que devem ser aplicados a qualquer custo, sem possibilidade de mudanças. O educador deve estar atento ao que o currículo oferece e tentar evoluí-lo, acrescentar a ele recursos que possam facilitar e aprimorar o aprendizado do aluno. É aí que os jogos matemáticos entram.

Os jogos matemáticos não são as únicas formas lúdicas de trabalhar um conteúdo ou de evoluir o currículo, mas é uma das mais bem aceitas pelos alunos. A escolha de um jogo não deve ser aleatória, é necessário selecionar um conteúdo, relacionar conceitos, pensar em matérias, estudar contextos, observar os alunos e refletir sobre a eficácia do que é proposto. Com certeza, aplicar um jogo matemático que tenha relação direta com um conteúdo é muito trabalhoso, mas a resposta dos alunos é mais satisfatória do que a tradicional aula quadro e giz.

Depois que o professor passou por todas as fases citadas acima e escolheu um jogo para os seus alunos, ele deve ter em mente que esse jogo deve ser um fator motivador para que eles consigam entender o verdadeiro significado de alguns termos e conceitos matemáticos. O professor deve estar se perguntando como que o jogo vai fazer com que o aluno entenda melhor conceitos matemáticos?

Tudo começa na conscientização do professor de que:
• é importante aplicar na sala de aula o lúdico, tornar a educação matemática algo acessível não só dentro de sala de aula, mas no cotidiano do nosso aluno.
• e devemos também tomar consciência de que não será no primeiro jogo aplicado que os alunos irão identificar o que fazer quando lhe é apresentado um jogo curricular e nem irá conseguir organizar mentalmente as fazes que deverá percorrer, tudo é um processo.
Para que as aplicações dos jogos curriculares sejam positivas, esses devem fazer parte da estratégia pedagógica do professor durante todo o ano letivo, não deve ser trabalhado aleatoriamente e ao aplicá-lo deve dar ao aluno a oportunidade de comunicar, interagir para que formulem as suas próprias opiniões.

A interação, a comunicação com outros colegas tornará a linguagem cotidiana e a linguagem matemática uma ponte de diálogo entre os alunos e entre eles e o professor. A comunicação entre eles, a identificação, a relação do jogo com o conteúdo matemático tornará mais fácil e acessível a compreensão dos pontos importantes para uma perfeita comunicação matemática que são:
• Compreender enunciados orais e escritos.
• Exprimir oralmente e por escrito enunciados de problemas e conclusões.
• Utilizar a nomenclatura adequada.
• Interpretar e utilizar representações matemáticas.
• Transcrever mensagens matemáticas da língua materna para a linguagem simbólica e vice-versa.

Durante a aplicação do jogo o professor deve estar atento às reações dos alunos, se realmente estão mentalmente envolvidos, se conseguem identificar e interpretar as regras, se estão superando as dificuldades ou procurando uma estratégia. Esses são pontos identificadores para o professor avaliar se realmente o jogo aplicado está sendo aceito.

O jogo deve ser visto pelo professor como uma das várias estratégias pedagógicas e o sucesso da sua aplicação está diretamente ligado ao planejamento (como o conteúdo será abordado).

O professor deve estar sempre atento às novas formas de ensino, sempre focando o ensino na realidade de vida e aprendizado do seu aluno.

Por Danielle de Miranda
Graduada em Matemática
Equipe Brasil Escola

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de