Pular para o conteúdo principal

Progressão Geométrica

Os termos que possuem a mesma distância em uma seqüência numérica escrita na forma de uma PG possuem uma propriedade que diz o seguinte:

Se multiplicarmos os dois termos eqüidistantes esse produto será igual à multiplicação dos dois extremos da PG (a1 . an).

Dada a PG finita (5,10,20,40,80,160,320) os elementos 5 e 320 são os extremos e os elementos 10 e 160; 20 e 80 são eqüidistantes.

Se multiplicarmos os extremos, teremos: 5 x 320 = 1600
Multiplicando os termos eqüidistantes, teremos:
10 x 160 = 1600
20 x 80 = 1600

Portanto, podemos dizer que a Propriedade dos termos eqüidistantes dos extremos de uma PG finita é verdadeira, pois no exemplo acima o produto dos extremos é igual ao produto dos termos eqüidistantes.

Exemplo: dada uma PG finita composta por 8 elementos, sabendo que
a3 . a6 = 75497472 e que a1 = - 6. Determine o valor de a8.

Como a PG possui 8 elementos os termos a3 e a6 são eqüidistantes, portanto, o seu produto será igual ao produto dos extremos:

a3 . a6 = a1 . a8
75497472 = - 6 . a8
75497472 : (-6) = a8

Portanto, a8 = -12582912.
Ao representarmos uma seqüência numérica devemos colocar seus elementos entre parênteses. Veja alguns exemplos de seqüências numéricas:

• (2, 4, 6, 8, 10, 12, ... ) é uma seqüência de números pares positivos.
• (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...) é uma seqüência de números naturais.
• (10, 20, 30, 40, 50...) é uma seqüência de números múltiplos de 10.
• (10, 15, 20, 30) é uma seqüência de números múltiplos de 5, maiores que cinco e menores que 35.

Essas seqüências são separadas em dois tipos:
• Seqüência finita é uma seqüência numérica na qual os elementos têm fim, como por exemplo, a seqüência dos números múltiplos de 5 maiores que 5 e menores que 35.
• Seqüência infinita é uma seqüência que não possui fim, ou seja, seus elementos seguem ao infinito, por exemplo: a seqüência dos números naturais.

Em uma seqüencia numérica qualquer, o primeiro termo é representado por a1, o segundo termo é a2, o terceiro a3 e assim por diante. Em uma seqüência numérica finita desconhecida, o último elemento é representado por an. A letra n determina o número de elementos da seqüência.

(a1, a2, a3, a4, ... , an, ... ) seqüência infinita.

(a1, a2, a3, a4, ... , an) seqüência finita.

Para obtermos os elementos de uma seqüência é preciso ter uma lei de formação da seqüência. Por exemplo:

Determine os cinco primeiros elementos de uma seqüência tal que an = 10n + 1, n N*

a1 = 101 + 1 = 10 + 1 = 11
a2 = 102 + 1 = 100 + 1 = 101
a3 = 103 + 1 = 1000 + 1 = 1001
a4 = 104 + 1 = 10000 + 1 = 10001
a5 = 105 + 1 = 100000 + 1 = 100001

Portanto, a seqüência será (11, 101, 1001, 10001, 100001).
Progressão geométrica finita é uma PG que tem um número determinado de elementos. Por exemplo, a seqüência (3,6,12,24,48) é uma PG de razão igual a q = 2.

A soma dos temos dessa PG será 3 + 6 + 12 + 24 + 48 = 93. Fazer essa soma é fácil, pois ela possui apenas cinco elementos, caso seja necessário somar os termos de uma PG com mais de dez elementos, o que é mais complicado, é preciso utilizar uma fórmula. Veja a sua demonstração:

Dada uma PG finita qualquer com n elemento, ou seja, com a quantidade de elementos indefinida. PG finita (a1, a2, a3, ... , an). A soma desses n elementos será feita da seguinte forma:

Sn = a1 + a2 + a3 + ... + an

Sabendo que a2 = a1 . q; a3 = a1 . q2; an = a1 . qn – 1

Podemos dizer que a soma dessa PG será:

Sn = a1 + a1 . q + a1 . q2 + a1 . q3 + ... + a1 . qn – 2 + a1 . qn – 1.

Como se trata de uma equação, se multiplicar um membro é preciso multiplicar o outro, por isso é necessário multiplicar os dois termos da última equação por q:

q . Sn = (a1 + a1 . q + a1 . q2 + a1 . q3 + ... + a1 . qn – 1)

q . Sn = a1 . q + a1 . q2 + a1 . q3 + a1 . q4 + ... + a1 . qn – 1 + a1 . qn

Fazendo a subtração:



Colocando em evidência os termos semelhantes, temos:
q . Sn – q . Sn = a1 . qn – a1
Sn (q - 1) = a1 (qn – 1)

Isolando o termo Sn (soma dos elementos), iremos obter a seguinte fórmula:

Sn = a1 (qn – 1)
q - 1

Portanto, a fórmula para obter a soma dos n elementos de uma PG finita é:

Sn = a1 (1 - qn )
1 - q

Exemplo: Dê a soma dos termos da seguinte PG (7,14,28, ... , 3584).

Para utilizarmos a fórmula da soma é preciso saber quem é o 1º termo, a razão e a quantidade de elementos que essa PG possui.

a1 = 7
q = 2
n = ?
Sn = ?

Portanto, é preciso que encontremos a quantidade de elementos que possui essa PG, utilizando a fórmula do termo geral.

an = a1 . qn – 1
3584 = 7 . 2n – 1
3584 : 7 = 2n – 1
512 = 2n – 1
29 = 2n – 1
n – 1 = 9
n = 10

Sn = a1 (qn – 1)
q - 1

S10 = 7 (210 – 1)
2 – 1

S10 = 7 (1024 – 1)
2 – 1

S10 = 7 . 1023

S10 = 7161
A seqüência (8 , 2 , a , b , ...) é uma P.G e a seqüência (b , 3/16 , c , ...) é uma P.A.
a) Qual é o valor de c?

Primeiro é preciso levar em consideração a P.G.
(8 , 2 , a , b , ...) a sua razão será igual a q = 2/8 = 1/4, dessa forma é necessário prosseguir dizendo que:

a : 2 = 1/4 → a = 1/2

a : b = 1/4 → 1/2 : b = 1/4 → b = 1/8

Com os valores de a e b, pode-se levar em consideração a P.A para que seja possível encontrar o valor do termo c.

(b , 3/16 , c , ...) substituindo o valor de b na P.A teremos:

(1/8 , 3/16 , c , ...), dessa forma, a razão dessa P.A será: r = 3/16 – 1/8 = 1/16.

Com o valor da razão podemos dizer que:

c – 3/16 = r
c – 3/16 = 1/16
c = 1/16 + 3/16
c = 1/4
www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de