Pular para o conteúdo principal

Apótema

Considerando um círculo e um polígono inscrito de n lados, definimos como apótema de uma figura poligonal o segmento de reta que parte do centro da figura formando com o lado um ângulo de 90º, isto é, podemos dizer que o apótema é perpendicular ao lado do polígono.

A determinação da medida do apótema de um polígono está diretamente ligada ao raio da circunferência em que ele está inscrito, ao valor do ângulo central e à medida do lado do triângulo que forma o polígono. A figura a seguir é um hexágono regular inscrito na circunferência de raio medindo 4 cm. Vamos determinar a medida do apótema desse hexágono.

No hexágono regular inscrito na circunferência, a medida do raio r da circunferência é igual à medida do lado do polígono. Dessa forma, temos que o lado medirá 4 cm. Observando o hexágono notamos que ele é formado por 6 triângulos, todos com o apótema de mesmo valor, então basta destacarmos um deles e trabalharmos as relações existentes.

Podemos aplicar a relação de Pitágoras, basta calcular a medida do apótema:



a² + 2² = 4²
a² + 4 = 16
a² = 16 – 4
a² = 12
√a² = √12
a = 2√3 cm


Exemplo 2

Determine o apótema do quadrado inscrito na circunferência e a medida do raio, sabendo que o lado do quadrado mede 10 cm.

Podemos trabalhar com o seguinte triângulo retângulo:

Determinando o apótema através da tangente do ângulo de 45º (360º : 8).

tg 45º = 5/a
1 = 5/a
a = 5 cm

Determinando o raio através do Teorema de Pitágoras:

r² = a² + 5²
r² = 5² + 5²
r² = 25 + 25
r² = 50
√r² = √50
r = 5√2 cm

Exemplo 3

Determine a medida do apótema da pirâmide a seguir, sabendo que sua altura mede 4,8 cm e o apótema da base mede 3,6 cm.

Resolução:
O apótema de uma pirâmide é o segmento que parte do vértice até a base da lateral, formando um ângulo reto, isto é, a medida da altura da face lateral.

a² = 3,6² + 4,8²
a² = 12,96 + 23,04
a² = 36
√a² = √36
a = 6 cm
Fonte www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de