Pular para o conteúdo principal

Genética - os precursores As idéias de Mendel e Darwin


Ervilha da variedade Pisum sativum utilizada por Mendel em seus experimentos
As primeiras pesquisas na área da hereditariedade e da genética datam de 1856, realizadas pelo monge Gregor Mendel, um professor de ciências com grande interesse em botânica. No jardim de um mosteiro da cidade de Brno, na República Checa - que naquela época fazia parte da Áustria -, Gregor Mendel iniciou seus experimentos com as ervilhas que ele mesmo havia plantado.

O trabalho de Mendel durou cerca de 8 anos. Durante esse tempo, ele polinizou as plantas com cuidado, separou as sementes, para plantá-las separadamente, e analisou as gerações sucessivas. Os precursores da ciência que hoje conhecemos pelo nome de genética possuíam recursos científicos e tecnológicos muito simples.

Os experimentos de Mendel
Em suas experiências, Mendel utilizou 34 variedades da ervilha Pisum sativum. A planta foi escolhida por recomendação de outros biólogos, por possuir flores grandes e características facilmente identificáveis, como, por exemplo, cor e textura das ervilhas, cor das vagens, cor das flores e altura das plantas. Além disso, a Pisum sativum é uma planta que faz autofecundação. E sua prole é sempre idêntica à planta original - a não ser que sofra fertilização artificial ou cruzada.

Em um de seus experimentos, Mendel cruzou duas plantas de linhagem pura, uma com sementes amarelas e outra com sementes verdes. O monge verificou, então, que todos os descendentes eram idênticos a um dos genitores. No caso, o traço fenotípico de um dos genitores não se expressava: todos os descendentes da primeira geração possuíam sementes amarelas. Mendel chamou de dominante a característica que aparecia na geração F1 e de recessiva a característica que não se expressava.

Mas Mendel cruzou os indivíduos da geração F1 entre si e obteve plantas, na geração F2, com a característica dominante (sementes amarelas) e com a característica recessiva (sementes verdes), na proporção de 3:1. Ou seja, 75% das plantas da geração F2 tinham sementes amarelas e 25% tinham sementes verdes. Com esses resultados, Mendel concluiu que a característica recessiva não desaparecia na primeira geração, mas apenas ficava escondida.

De acordo com Mendel, as características hereditárias são condicionadas por pares de fatores hereditários. Hoje em dia, tais fatores são conhecidos como genes. As plantas puras são portadoras de apenas um tipo de fator (VV ou vv). As plantas híbridas são portadoras de um fator dominante e de um recessivo (Vv).

Leis de Mendel
A primeira lei ou princípio formulado por Mendel, com base em seus experimentos, diz que os genes são distribuídos independentemente, sem mistura. Os dois alelos de cada gene presente em um indivíduo separam-se na formação dos gametas. Os alelos são formas distintas do gene. Por exemplo: o alelo que condiciona a presença de sementes verdes e o alelo que condiciona a presença de sementes amarelas.

Ao estudar a herança de duas ou mais características combinadas (como, por exemplo, a cor e a forma das sementes), Mendel formulou a segunda lei ou lei da segregação independente dos fatores, que diz: os alelos de dois ou mais genes de um indivíduo segregam-se independentemente, combinando-se ao acaso nos gametas.

O trabalho de Mendel ficou caído no esquecimento até o ano de 1900, quando foi redescoberto e confirmado por três diferentes cientistas - um holandês, um alemão e um austríaco -, que trabalhavam independentemente, com plantas diferentes. Eles descobriram os trabalhos de Mendel ao revisarem a literatura, antes de publicarem seus próprios resultados. Cada um dos pesquisadores anunciou as descobertas desse monge e ajudou a expandir os conhecimentos sobre as leis de Mendel.

Darwin e a hereditariedade
Charles Darwin não só publicou um dos mais importantes livros de todos os tempos, A origem das espécies, em 1859, como foi um dos precursores dos estudos sobre hereditariedade.

Em uma carta escrita, em 1866, a seu amigo Alfred Wallace, também naturalista, Darwin afirma: "Eu não acho que você entenda o que eu quero dizer pela falta de mistura de certas variedades. Isto não se refere à fertilidade; um exemplo irá explicar. Eu cruzei duas variedades de ervilhas de cheiro que são muito diferentes com relação à cor, e obtive, até mesmo da mesma vagem, as mesmas variedades perfeitas, mas nenhum intermediário. Algo deste tipo, eu devo pensar, deve ocorrer pelo menos com suas borboletas e as três formas de Lythrum; embora estes casos sejam aparentemente tão maravilhosos, eu não sei se eles são mais como qualquer fêmea no mundo produzindo descendentes machos e fêmeas distintos".

A carta é uma das provas do interesse de Darwin pela questão da hereditariedade. Em A origem das espécies, ele já havia concluído que as espécies evoluem por um processo de seleção natural - ou, como disse seu amigo Wallace, pela sobrevivência dos mais adaptados em um dado ambiente.

Apesar de seus estudos sobre hereditariedade, Darwin não conseguiu explicar de que maneira agia a seleção natural. Mas, com o passar do tempo, o crescente entendimento sobre a genética e a recuperação das leis de Mendel explicaram como a seleção natural podia trabalhar e ajudaram a dar suporte à teoria de Darwin.
Cynthia Santos

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de