Pular para o conteúdo principal

A Cinemática





A Cinemática, parte da mecânica que se ocupa da descrição do movimento e não de suas causas, que são estudadas pela dinâmica.

Na mecânica clássica, o movimento de um corpo é descrito por meio de três funções do tempo: a posição em relação a um referencial, a velocidade e a aceleração. Em princípio, dada a aceleração do corpo como função do tempo, podemos determinar sua velocidade em qualquer instante e depois sua posição.

Os movimentos encontrados na natureza são inúmeros e, na maioria das vezes, combinações extremamente complexas de translações e rotações. Esse é o caso de uma bola de futebol chutada com efeito, cujo exemplo mais célebre é a "folha seca" do mestre Didi, assim chamada porque o movimento da bola assemelhava-se ao de uma folha caindo ao sabor do vento. Movimentos desse tipo exigem uma descrição matemática sofisticada que muitas vezes só é possível com auxílio de computadores de grande capacidade de processamento. Alguns movimentos, porém, são relativamente simples e podem ser estudados com métodos simples. É o caso, por exemplo, do movimento retilíneo uniforme (MRU), do movimento retilíneo uniformemente variado (MRUV), ou do movimento circular uniforme (MCU).

A análise dos movimentos observados nas partículas e sistemas, independentemente de suas causas, é o objeto do estudo da cinemática. É difícil descrever qualquer movimento na natureza sem recorrer a simplificações iniciais que abordem esse movimento como composição de outros mais simples, regidos por trajetórias que podem ser expressas matematicamente. Em cinemática distinguem-se fundamentalmente dois tipos de movimentos básicos simples: o retilíneo e o circular. O movimento circular se define pela determinação da posição do corpo e do ângulo de rotação, em relação a um sistema de referência inercial.

Define-se como movimento uniforme aquele que apresenta velocidade constante, linear ou angular, de modo que seja possível determinar a posição de um sistema apenas pela multiplicação de sua velocidade pelo tempo transcorrido, e pelo acréscimo do resultado a sua posição inicial. Tal definição se expressa em termos matemáticos por meio das seguintes equações:

s = so + v.t

em que s é a posição atual; so é a posição inicial; v é a velocidade linear, que no sistema MKS se expressa em metros por segundo; e t é o tempo transcorrido; e

j = j0 + v.t

em que j é o ângulo atual; j0 é o ângulo inicial; v é a velocidade angular, que no sistema MKS se expressa em radianos por segundo; e t é o tempo transcorrido.

O movimento uniformemente variado é aquele em que se verifica uma variação uniforme de velocidade, ou aceleração constante, regido por leis matemáticas expressas pelas seguintes fórmulas:

s = so + vo.t + 1/2 a.t²

em que vo é a velocidade linear inicial; a é a aceleração linear, que no sistema MKS se expressa em metros por segundo ao quadrado, e

j = j0 + v0 . t + 1/2y.t²

em que v0 é a velocidade angular inicial e y é a aceleração angular, que no sistema MKS se mede em radianos por segundo ao quadrado.

Os movimentos não uniformemente acelerados têm expressões matemáticas bem mais complicadas. O movimento uniforme e o uniformemente variado permitem estudar dois fenômenos cinemáticos de grande interesse: a queda livre de dois corpos, motivada por uma aceleração constante, chamada de gravidade (g), e o lançamento de projéteis, que pode ser decomposto em dois movimentos simultâneos, um horizontal uniforme e outro vertical uniformemente acelerado, com aceleração g. Do ponto de vista cinemático, muitos sistemas estáveis reagem às perturbações a seu funcionamento normal oscilando, como forma de recuperar o equilíbrio perdido. O movimento oscilatório harmônico, como é conhecido, define-se pela existência de uma força que em todo momento se opõe à direção do movimento.

Autoria: Danielle Teixeira

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de