Pular para o conteúdo principal

Sistemas Lineares

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        
www.youtube.com/accbarroso1   

Chamamos de sistema linear um conjunto de equações lineares. Esse conjunto pode ter m equações e n incógnitas. Resolver um sistema linear consiste em determinar o conjunto solução de suas incógnitas, isto é, encontrar os valores desconhecidos que tornem o sistema verdadeiro.

De acordo com a solução, um sistema pode ser classificado da seguinte forma:

Possível e determinado: uma única solução
Possível e indeterminado: infinitas soluções
Impossível: não possui soluções.

Observe o seguinte sistema linear com três equações e três incógnitas:

Exemplo 1

Devemos aplicar conhecimentos matemáticos relacionados à resolução de sistemas no intuito de descobrir os valores de x, y e z. Nessas situações, o cálculo mental se torna muito complexo. Observe o método de resolução oferecido para este sistema linear:

1ª equação – Isolar x

x + 2y + 3z = 1
x = 1 – 2y – 3z

2ª equação – Substituir x por 1 – 2y – 3z

4x – y – z = 3
4 * (1 – 2y – 3z) – y – z = 3
4 – 8y – 12z – y – z = 3
–9y – 13z = 3 – 4
–9y – 13z = – 1

3ª equação – Substituir x por 1 – 2y – 3z

x + y – z = 6
1 – 2y – 3z + y – z = 6
– y – 4z = 6 – 1
– y – 4z = 5

Resolver o novo sistema determinando os valores de z e y.

A solução do sistema linear é: x = 1, y = 3 e z = –2. Nesse caso, o sistema é possível e determinado.

Exemplo 2

Isolar x na 1ª equação

x + 2y – z = 3
x = 3 – 2y + z

Substituir x na 2ª equação

3x – y + z = 1
3 * (3 – 2y + z) – y + z = 1
9 – 6y + 3z – y + z = 1
– 7y + 4z = – 8

Substituir x na 3ª equação

2x + 4y – 2z = 6
2 * (3 – 2y + z) + 4y – 2z = 6
6 – 4y + 2z + 4y – 2z = 6
0y + 0z = 6 – 6
0y + 0z = 0

Na ocorrência dessa situação dizemos que o sistema é possível e indeterminado, pois nesse caso as incógnitas admitem infinitas soluções. Por qualquer valor que trocarmos y e z na equação 0y + 0z = 0, tornamos a sentença verdadeira. Observe:

y = 3 e z = 4
0 * 3 + 0 * 4 = 0 → verdadeiro

y = 7 e z = – 4
0 * 7 + 0 * (–4) = 0 → verdadeiro

Um sistema será impossível quando na sua resolução ocorrer sentença semelhante a 0y = 4, pois nessas condições temos uma divisão impossível, 4 / 0.
www.bancodeconcursos.com

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de