Pular para o conteúdo principal

sistema binário

O sistema binário de computação já era conhecido na China uns 3000 a.C., de acordo com os manuscritos da época. Quarenta e seis séculos depois, Leibniz redescobre o sistema binário.
Este sistema de numeração binário é muito importante, na medida em que, modernamente, é de largo alcance por ser utilizado nas calculadoras electrónicas, computadores e nas estruturas que envolvem relações binárias. Este sistema pode ser chamado sistema de base dois, binário ou dual, o qual utiliza apenas dois algarismos, o 0 e o 1, os quais nas estruturas dessas máquinas se fazem corresponder às situações de sim-não, aberto-fechado, contacto-interrupção, passagem-vedação, etc., uma vez que os circuitos digitais são constituídos por elementos dotados de dois estados distintos.
A cada um dos símbolos do sistema binário chama-se um «bit».
O maior inconveniente da base dois é que a representação de cada número envolve muitos algarismos. Por exemplo, cem mil, que na base dez se representa por 5 algarismos, na base dois representa-se por 17 algarismos! Porém, este inconveniente é superado nas máquinas electrónicas pela velocidade.
Como é que funciona, afinal, este sistema binário?
Na base dois, um número imediatamente à esquerda de outro, representa, em relação a este, um número de unidades duas vezes maior. (..., 2 3, 2 2, 21, 20)
Como é que se representa um número decimal (numeração árabe) na base dois?
Vejamos os seguintes exemplos:
Notação decimal Notação binária
0 0 ( =0×20 )
1 1 ( =1×20 )
2 10 ( =1×21+0×20)
3 11 ( =1×21+1×20)
4 100 ( =1×22+0×21+0×20)
5 101 ( =1×22+0×21+1×20)
6 110 ( =1×22+1×21+0×20)
7 111 ( =1×22+1×21+1×20)
Temos então que, para passar da notação binária para a notação decimal, o processo não é muito complexo e é o seguinte, por exemplo:
10011010(2)=1×27+0×26+0×25+1×24+1×23+0×22+1×21+0×20
= 128+0+0+16+8+0+2+0=
=154(10) (O que é uma maneira bem mais prática de representar o mesmo número!)

Como é que se passa da base decimal para a base binária?

Agora o processo é um pouco mais complexo, mas não deixa de ser interessante, vejamos os seguintes exemplos:
8(10)= ?(2)

Façamos o seguinte raciocínio:

Podemos então concluir que 8(10)=1000(2) ( 8 = 1×2³+ +0×2²+ 0×2¹+0×20)
Vejamos este outro exemplo:
66(10)= ?(2)
Podemos então concluir que 66(10)=1000010(2) ( 66 = 1×26+ + 0×25+0×24+0×23+0×22+1×21+0×20 )
Fonte: www.educ.fc.ul.pt

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de