Pular para o conteúdo principal

Forma trigonométrica de um número complexo

Forma trigonométrica de um número complexo

Marcelo Rigonatto


Números complexos e trigonometria
Número complexo é um par ordenado de números reais z= (a, b). Na forma algébrica, o par ordenado pode ser escrito como z = (a + bi). Representando um número complexo no plano de Argand-Gauss, obtemos:
Onde:
|z| → é o módulo do número complexo z.
θ → é o argumento de z.

Pelo teorema de Pitágoras, obtemos:

Podemos escrever a e b em função de θ e |z| utilizando a trigonometria no triângulo retângulo.

Substituindo as duas igualdades acima na forma algébrica de z, teremos:
z = |z|∙cosθ + |z|∙senθ∙i

Colocando |z| em evidência, obtemos:

z = |z|(cosθ + i∙sen θ) → que é chamada de forma trigonométrica de z ou forma polar.

A forma trigonométrica é muito utilizada na potenciação e radiciação de números complexos, que são objetos de estudos futuros no conjunto complexo.

Vejamos alguns exemplos para melhor compreensão.

Exemplo 1: Escreva cada um dos seguintes números complexos na forma trigonométrica.

a) z = 1 + i

Solução: Pela forma algébrica, temos que:
a = 1 e b = 1

Segue que:

Assim, obtemos:

Como o ponto (a, b) = (1, 1) está no primeiro quadrante, podemos afirmar que o ângulo θ que apresenta os valores de seno e cosseno indicados acima é θ = 45o. Dessa maneira, a forma trigonométrica do número complexo será:
z = √2 (cos45o + i∙sen 45o )

b) z = -1 + i√3

Solução: A partir da forma algébrica, obtemos:

a = -1 e b = √3

O módulo de z será dado por:

Segue que:

Como o ponto (a, b) = (-1,√3) pertence ao segundo quadrante, podemos afirmar que o ângulo θ que apresenta os valores de seno e cosseno indicados é θ = 120o. Logo, a forma trigonométrica ou polar do número complexo será:

z = 2(cos120o + i∙sen 120o)

Exemplo 2. Obtenha a forma algébrica do número complexo
z = 6(cos270o + i∙sen 270o )

Solução: Da trigonometria no ciclo, temos que:

cos 270o = 0 e sen 270o = – 1

Assim, obtemos:

z = 6(cos270o + i∙sen 270o) = 6[0+i∙(-1)] = -6i

Portanto, a forma algébrica de z é z = – 6i

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de