Pular para o conteúdo principal

Os Sólidos de Platão

Os sólidos de Platão também são denominados de poliedros, pois são formados por faces, arestas e vértices. As faces são constituídas por seções de planos, considerando que entre duas faces temos as arestas, as quais possuem em suas extremidades os vértices.
Platão foi um filósofo grego, que viveu entre os séculos V e IV a.C., e estabeleceu importantes propriedades em alguns poliedros. Os poliedros de Platão possuem características próprias e se enquadram nas seguintes condições:

O número de arestas é igual em todas as faces;
Os ângulos poliédricos possuem o mesmo número de arestas;
Nos sólidos considerados poliedros de Platão vale a relação de Euler (V – A + F = 2) onde V = vértices, A = arestas e F = faces.

O prisma a seguir pode ser considerado um Poliedro da Platão, pois se encaixa nas condições descritas anteriormente.
As seis faces do sólido são quadriláteros, isto é, são formadas por quatro arestas.
Os ângulos são triédricos, pois todos são formados por três arestas.
A relação de Euler pode ser aplicada, observe:
O sólido possui oito vértices, seis faces e 12 arestas:
V – A + F = 2
8 – 12 + 6 = 2
14 – 12 = 2
2 = 2 (verdadeiro)

Os poliedros de Platão são classificados em cinco classes de acordo com a tabela a seguir:



Platão estabeleceu algumas relações entre as classes de poliedros e a construção do Universo. Ele associou os poliedros cubo, icosaedro, tetraedro e octaedro, respectivamente, aos elementos terra, água, fogo e ar; e o dodecaedro foi associado ao universo. Conheça os poliedros de Platão:
Marcos Noé
Graduado em Matemática

Comentários

  1. Olá Antonio, cheguei aqui através dos Educadores Multiplicadores. Confesso que não gosto de matemática, mas vim prestigiar seu trabalho. Parabéns! ♥
    Abraços, Genis
    http://redeeducacaoemfoco.blogspot.com.br/
    http://blogdagenis.blogspot.com.br/
    http://mamaegenis.blogspot.com.br/

    ResponderExcluir

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de