Pular para o conteúdo principal

TRIÂNGULOS


www.youtube.com/accbarroso1
Conceito: Triângulo é um polígono de três lados

















Na figura acima:
= Os pontos A, B e C são vértices do triângulo.
= Os segmentos AB, BC e CA são os lados do triângulo.
= Os ângulos A, B e C são ângulos internos do triângulo

ÂNGULOS EXTERNO

Angulo externo é o ângulo suplementar do ângulo interno
















PERÍMETRO

O perímetro de um  triângulo é igual à soma das medidas dos seus lados .

Perímetro ABC = AB + AC + BC



CLASSIFICAÇÃO DOS TRIÂNGULOS 


Quanto aos lados os trângulos se classificam em:

Equilátero quando tem os três lados congruentes.
Isósceles quando tem dois lados congruentes
Escaleno quando não temlados congruentes
















Quanto aos ângulos os triângulos se classificam em: 

Acutângulo quando te três ângulos agudos 
Retângulo quando tem um ângulo reto.
Obtusângulo quando tem um angulo obtuso
















Em um triângulo retângulo os lados que formam o ângulo reto chamam-secatetos e o lado oposto ao ângulo reto chama-se hipotenusa.

















EXERCÍCIOS

1) Observe o triângulo retangulo e responda:
















a) Quais são os vértices?
b) Quais são os lados?
c) Quais são os ângulos?

2) O perimetro de um triângulo é 25 cm. Dois lados medem respectivamente 7,8 cm e 8,2 cm.  Calcule a medida do terceiro lado?

3) Determine o comprimento do lado BC, sabendo que o perímewtro do triângulo ABC é 48 cm.
















4) O perímetro do triângulo ´34 cm . Determine o comprimento do menor lado.
















5) Classifique o triângulo de acordo com as medidas dos lados.
















6) Classifique o triângulo de acordo com as medidas dos ângulos ;
















7) Observe a figura e responda:
















a) Que nome recebe o lado BC?

b) Que nome recebem os lados AB e AC?


CONDIÇÕES DE EXISTÊNCIA DE UM TRIÂNGULO


Em qualquer triângulo, cada lado é menor que a soma dos outros dois lados 

Exemplo
















Vamos comparar a medida de cada lado com a soma das medidas dos outros dois 
assim:















Para vferificar a citada propriedade, procure construir um triângulo com as seguintes medidas 7 cm, 4 cm e 2 cm .















È impossivel, não? Logo não existe o triângulo cujos lados, medem 7cm, 4cm e 2cm.

EXERCÍCIOS 

1) Existe ou não um triângulo com lados medindo:

a) 10 cm , 8cm e 7cm?
b) 8cm, 4cm e 3 cm ?
c) 2cm, 4 cm e 6 cm?
d) 3 cm, 4 cm e 5 cm?
e) 3 cm, 5 cm e 6 cm?
f) 4 cm, 10 cm e 5cm?

2) Dois Lados de um triângulo isósceles medem 38 cm e 15 cm. Qual poderá ser a medida do terceiro lado?


ELEMENTOS NOTÁVEIS DE UM TRIÂNGULO

,= Mediana de um triângulo é o segmento que une um vértice ao ponto médio do lado oposto.
















Todo triângulo tem três medianas que se encontram em um ponto chamadobaricentro

Biossetriz de um triângulo é o segmento da bissetriz de um ângulo interno que tem por extremidades o vértice desse ângulo e o ponto de encontro com o lado oposto.


Todo triângulo tem três bissetrizes que se encontram em um ponto interior chamado incentro.

Altura de um triângulo é o segmento de perpendicular traçada de um vértice ao lado oposto ou ao seu prolongamento


Todo o trângulo tem três alturas que se encontram em um ponto chamado ortocentro


SOMA DAS MEDIDAS DOS ANGULOS INTERNOS DE UM TRIÂNGULO

Observe os triângulos e as medidas dos ângulos internos















vamos à demonstração desse teorema.

TEOREMA

Em qualquer triângulo, a soma das medidas dos ângulos internos é igual a 180° 

Prova


EXERCÍCIOS RESOLVIDOS

1) Calcular x no triângulo abaixo:



2) Calcule x no triângulo abaixo:


3) Calcule x no triângulo abaixo:


EXERCÍCIOS

1) Quanto vale a soma dos ângulos internos de um triângulo?

2) Copie e complete o quandro, sendo A,B e C ângulos internos de um triângulo.


3) Determine x em cada um dos triângulos








4) Determine x em cada um dos triângulos:













5) Determine a medida dos ângulos x, y e z.






TEOREMA DO ÂNGULO EXTERNO

Em qualquer triângulo, a medida de um ângulo externo é igual à soma das medidas dos ângulos internos não-adjacentes.

Prova:

consideremos um triângulo ABC. vamos provar que m(ê) = m(Â) + m (B) 




Exemplos

Calcule o valor de x no triângulo abaixo:


EXERCÍCIOS

1) Determine a medida do ângulo externo indicado em cada triângulo:










2) Calcule o valor de x nos triângulos dados:






3) Calcule o valor de x nos triângulos dados:




4) Calcule o valor de x nos triângulos dados:


















5) Calcule o valor de x:






6) Calcule w e y :


7) Calcule x:


CONCRÊNCIA DE TRIÂNGULOS


Intuitivamente, dois triângulos ABC e RST são congruentes se for possivel transportar um deles sobre o outro, de modo que eles coincidam.


Definição

Dois triângulos são chamados congruentes quando os lados e os angulos correspondentes são congruentes.

logo:



CASOS DE  CONGRUÊNCIA

O estudo dos casos de congruência de dois triângulos tem por finalidade estabelecer o menor número de condições para que dois triângulos sejam congruêntes.

1º CAS0 : L. L. L. ( lado, lado, lado)

Dois triângulos que têm os três lados respectivamente congruentes são congruentes.



2º CASO L. A. L. (lado, ângulo,  lado)

Dois treângulos que têm dois lados e o ângulo por eles formados respectivamente congruentes são con gruentes.


3º CASO A. L. A. ( ângulo, lado , ângulo)

Dois triângulos que tem um lado e dois ângulos adjacentes a esse lado respectivamente congruentes são congruentes.

4º CASO : L. A. A° ( lado , ângulo, ângulo oposto)

Dois trângulos que têm um lado, um ângulo adjacente e um ângulo oposto a esse lado respectivamente congruentes são congruentes.



EXERCÍCIOS

1) Cite, em cada item, o caso de congruência dos triângulos.












Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de